Morphometric Analysis of Third Molar Root Development by an Experimental Method Using Digital Orthopantomographs

Abstract

The aim of the study was to conduct a morphometric analysis of the root development of the third molar, with the purpose of overcoming the limits of an exclusively morphological analysis. The study was divided in two phases. The first one was the verification of the existence of a constant crown-root $(\mathrm{C} / \mathrm{R})$ ratio on a sample of 100 third molars, characterized by a complete root development. The value obtained was used in the second phase to predict the final root's length, knowing the crown height. So we have calculated, on a sample of 322 third molars with developing roots, the final ratios between incomplete roots and complete roots. Statistical analysis was then made with 90%, 95%, and 99% confidence intervals. The results showed a significant difference according to the age of the subject and the limit values, lower and upper, for subjects aged 16 and 17 years versus those aged 18 and 19 . For each analysis, the width of the class of tolerance and other statistical indicators were calculated. The results we obtained support the advantage of a morphometric study as opposed to an exclusively morphological study, but all the techniques used to determine the age of a living subject can provide only indications of the biological age, but no certainties as regards chronological age.

KEYWORDS: forensic science, age determination, third molar, forensic odontology

Assessment of the biological age of a subject around the age of majority has always been a challenging issue for an Italian forensic doctor because of the implications on criminal liability, and also for other purposes as regards young illegal immigrants and refugee children, such as school attendance, social benefits, adoption procedures, employment, and marriage, in the context of the international protection guaranteed by the United Nations High Commissioner for Refugees (1).

In fact, forensic age estimation is often requested by authorities to ascertain whether a person suspected of a crime has reached the age of imputability. In most European countries, the legally relevant age limit range is between the 14th and the 21st year of life (2).

In particular, in Italy, the limit above which a person has legal responsibility is 14 years and the age limit of 18 is decisive for establishing whether juvenile delinquency law, or general criminal law in force for adults, is to be applied.

For this reason, young foreign criminals sometimes have false passports with a late birth date inserted in the attempt to evade punishment (3), so forensic experts are asked to give their opinion as to whether a person is younger or older than 18 years.

To this end, recourse to orthopantomography, together with radiography of the left hand and wrist bones and the iliac crest, is a consolidated technique. In particular, late in adolescence (after 1516 years) all of the hand-wrist bones have achieved the adult morphology and their epiphyses are fused; likewise all of the teeth have erupted and completed the root formation, with the exception of the roots of the third molars, that continue to develop (4).

Thus, many studies have carried out a morphological analysis of the late developmental stages of root formation of the wisdom teeth,

[^0]as a means of determining adult age. The aim of our study was to test the possibilities of use of digital orthopantomographs (OPTs), on the basis of a morphometric analysis of the development of the third molar, carried out with the purpose of overcoming the limits of an exclusive morphological analysis. In fact, it is known that morphological analysis presents difficulty in the precise identification of the third molar in the various stages of development; moreover, in previous studies, we also observed the presence of an intermediate stage between the last two stages of Demirjian's classification (G and H) $(3,5,6)$. The risk, therefore, is that of observer bias, because of the subjectivity of the evaluation criteria adopted by each individual; besides, this kind of analysis indicates the length of the roots, which is neither a known nor predictable part of the final length.

Therefore, it is necessary to conduct a morphometric analysis to search for constant dimensional crown-root (C / R) ratio and standard deviation values of the third molar, to enable objective analysis of the specimens. Our goal was to predict a final root length, having noted the crown dimension, and finally to obtain a ratio between the true root length in the growing third molars, and the estimated length.

Materials and Methods

In the application of our method, OPTs were acquired by digital systematic analysis using specific dental software (Kodak Dental Software) on a Pentium processor.

The measurements were taken only on inferior molars because the apexes are more evident; in fact, in the upper arch, the wall of the maxillary sinus hides the apex of the third molars, making it more difficult to interpret intermediate stages of development.

In addition, teeth with malformations or evident defects in root development were excluded.

Our study was subdivided into two phases. In the first, the existence of a constant C / R ratio was verified on a sample of 100 third molars characterized by complete root development.

When applying our method, we referred to the works by Holtta and Jepsen $(7,8)$ who studied the C / R ratio of some dental elements, for orthodontic and prosthetic purposes, but not the third molars. We therefore adopted the same reference points in the latter elements, with some modifications.

First, two points of the cemento-enamel junction (AC) were established in order to trace a straight line joining those points; subsequently, parallels to the straight line were drawn, tangentially to the apex of the highest coronal cusp and the apex of the longest root, respectively (Fig. 1).

The measurements were made perpendicularly for the three straight lines and their parallels, in order to minimize the error in the calculation phase.

Both steps (drawing of the line and measurement), as well as the acquisition of the OPT, were carried out by digital systematic search using specific dental software.

Then the crown and root measurements were taken and the ratio calculated of the third molars with completely formed roots (Table 1).

After the measurements, we carried out a statistical analysis targeted at individualizing the arithmetic mean of the ratios, and standard deviation, which produced an average value of the C / R ratio equal to 0.518 and a standard deviation of 0.05 .

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}}
$$

\bar{x} is the mean of the sample.

FIG. 1—The parallel lines passing through the reference points considered in the measurements: (a) the summit of the highest coronal cusp, (b) cemento-enamel junction, and (c) the apex of the longest root.

TABLE 1—Measurement of 100 complete third molars.*

No.	C	R	C/R	No.	C	R	C/R
1	7.09	14.05	0.504	51	8.17	17.44	0.468
2	7.11	13.49	0.527	52	7.81	17.81	0.438
3	8.72	17.05	0.511	53	8.22	17.81	0.461
4	9.23	16.67	0.552	54	10.49	19.26	0.544
5	8.00	16.00	0.5	55	9.38	17.28	0.542
6	7.44	15.13	0.491	56	8.95	17.76	0.503
7	7.82	15.13	0.516	57	8.42	17.37	0.484
8	7.79	13.38	0.582	58	8.00	17.86	0.447
9	7.38	12.00	0.619	59	8.71	16.14	0.539
10	7.34	14.56	0.504	60	7.00	17.13	0.408
11	7.50	14.46	0.518	61	7.86	14.27	0.538
12	7.28	14.46	0.503	62	8.33	16.26	0.545
13	7.07	13.9	0.508	63	8.61	15.44	0.557
14	7.32	13.92	0.525	64	8.48	16.46	0.515
15	7.27	15.76	0.461	65	8.17	14.65	0.557
16	5.68	13.78	0.412	66	7.4	12.47	0.593
17	8.24	15.29	0.538	67	10.14	17.67	0.573
18	6.79	13.07	0.519	68	9.18	18.49	0.496
19	7.16	12.27	0.583	69	9.49	16.15	0.588
20	7.34	14.94	0.491	70	7.73	14.32	0.539
21	8.73	14.43	0.604	71	7.11	15	0.474
22	6.33	12.66	0.5	72	9.06	15.00	0.604
23	6.96	12.78	0.544	73	10.14	17.36	0.584
24	7.4	14.68	0.504	74	11.53	18.33	0.629
25	8.31	16.62	0.5	75	8.70	15.58	0.558
26	7.82	16.92	0.462	76	8.83	15.97	0.552
27	7.44	16.79	0.443	77	8.31	16.49	0.503
28	7.62	14.88	0.512	78	7.27	15.84	0.458
29	7.75	15.12	0.512	79	7.68	13.38	0.588
30	8.68	17.11	0.507	80	8.00	14.25	0.561
31	9.21	18.16	0.507	81	7.84	17.97	0.436
32	8.98	15.95	0.525	82	8.36	18.49	0.452
33	8.21	15.13	0.542	83	8.57	15.19	0.564
34	8.13	15.59	0.547	84	8.57	14.16	0.605
35	6.18	11.76	0.525	85	7.56	15.9	0.475
36	8.53	16.47	0.517	86	6.36	13.12	0.484
37	8.89	14.65	0.565	87	9.75	15.82	0.616
38	6.81	12.55	0.542	88	8.61	15.06	0.571
39	7.07	15.37	0.459	89	8.46	15.9	0.532
40	7.57	14.59	0.539	90	7.56	17.31	0.436
41	9.46	17.3	0.546	93	8.85	17.69	0.5
42	8.96	15.84	0.565	94	8.59	16.79	0.511
43	7.79	17.53	0.444	95	8.23	16.59	0.496
44	8.08	16.28	0.496	96	7.30	14.63	0.498
45	8.33	16.92	0.492	97	7.63	15.82	0.482
46	7.82	12.31	0.63	98	8.4	16.30	0.515
47	7.18	16.41	0.437	99	9.13	17.11	0.533
48	7.16	15.06	0.473	100	8.48	16.46	0.515
49	7.65	15.80	0.484				
50	7.8	15.73	0.495				

R: root size (from the cemento-enamel junction to the apex of the longest root) in millimetres.
C / R : ratios of the two sizes
*C: crown size (from the summit of the highest coronal cusp to the cemento-enamel junction) in millimetres.

This outcome, furthermore, was supported by results from an inferential study that enabled us to determine, with 95% confidence intervals, an interval ranging between 0.509 and 0.528 , within which falls the C / R ratio of the reference population (Italian) from which our sample was taken.

The confidence interval emerges from the distribution of the crown and root values and their ratios according to a normal (Gaussian) curve, calculated by the formula:

$$
\left[\bar{x}-z_{\alpha / 2} \hat{\sigma}(\bar{x}) ; \bar{x}+z_{\alpha / 2} \hat{\sigma}(\bar{x})\right]
$$

$\hat{\sigma}(\bar{x})$ is the standard deviation of the mean of the sample. $z_{\alpha / 2}$ is the value of the standardized "normal" (Gaussian curve).

In the second phase of our study, we analyzed a sample of 322 third molars with developing roots belonging to individuals aged between 16 and 19 years, subdivided by sex (Table 2). In this phase, we drew the parallels to the straight line which join the two points of the cemento-enamel junction (AC), tangentially to the apex of the highest coronal cusp and the most apical part of the calcified root in the developing roots, respectively.

So, the value obtained from the first phase of the study was used in the successive phase, establishing in the third molars with developing roots, the total measurements of the roots lengths (lt), knowing the crown height (h):
$\mathrm{Lt}=h /(\mathrm{C} / \mathrm{R}$ mean $)$.
After obtaining the estimated root growth, on the basis of identification of the constant ratio, we calculated the ratio between the length of incomplete roots (ir) and complete roots, according to the growth estimate (cr).
fr (final ratio): ir/cr incomplete root/complete root (Tables 3 and 4).

Statistical analysis was then made on the basis of the "normal" (Gaussian curve) distribution of the values of the root/crown ratios, using as reference value the ratios in adult (18-year-old) subjects, creating two groups: older and younger than 18 years of age. Then specific indicators of variability were examined, to see how far the phenomenon was statistically normally distributed within various confidence intervals.

It must be noted that the sample size (322 cases, 143 males and 179 females) is not enough to represent a world population, but is sufficient for a first "experimental" phase. Starting therefore from the root size values, a first macro differentiation was made, for both sexes, distinguishing minors from those over age, established as 18 years old (Table 2).

Analysis was made with $90 \%, 95 \%$, and 99% confidence intervals, obtaining two limit values (lower and upper) of the ir/cr ratios in subjects under 18 (16 and 17 years old) and over 18 in our sample, distinguished by sex (Fig. 2).

This yielded, for each confidence interval, the limit values, showing that the width of the range of acceptable values increased according to the confidence interval applied (Fig. 2).

Results

The results of the ratios for the root length during development and the final length estimated by statistical analysis are shown in Tables 3 and 4, distinguished by sex.

The results of the confidence intervals for these ratios are shown in Table 5 and graphically illustrated in Figs. $2 a, 2 b$, and $2 c$.

In the sample we analyzed, the ratios show a significant difference according to the age of the subject and the limit values, lower and upper, for subjects aged 16 and 17 years versus those aged 18 and 19 .

The lower limits, i.e., the lowest values of the ir/cr ratio for minors and adults, were 0.557 versus 0.737 in our sample; the upper limits were 0.625 versus 0.833 for minors and adults, with 90% confidence intervals (Fig. 2a).

TABLE 2-Cases observed.
Cases observed (322)

Males (143)			Females (179)	
Minors	Adults		Minors	Adults
81	62		108	71

FIG. 2-(a) Graph of the lower and upper limits by confidence interval levels: 90% confidence level. (b) Graph of the lower and upper limits by confidence interval levels: 95% confidence level. (c) Graph of the lower and upper limits by confidence interval levels: 99% confidence level.

These limits are therefore those delimiting the class within which there is a 90% possibility that a subject with a given ir/cr ratio is a minor (16 or 17) or an adult (18 or19).

The same analysis was then made with 95% and 99% confidence intervals, showing an increasing width of the limit values (Figs. $2 b$ and $2 c$). For each analysis, the width of the class of tolerance and other statistical indicators were calculated (Table 5; Figs 3-4).

Our study showed that the values of the ratios in the female sex, both for the upper and the lower limits, were invariably lower than the values for the male sex, in accordance with other works in this field ($4,6,9-12$), confirming that development of the third molars, unlike that of the other dental elements, occurs earlier in males than in females.

Discussion

The results we obtained support the advantage of a morphometric study as opposed to an exclusively morphological study of the stages of maturation of the third molars, and of the use of digital

TABLE 3-143 Third molars with developing roots belonging to male individuals aged between 16 and 19 years.

N	Age	$\mathrm{Ir} / \mathrm{cr}$	N	Age	$\mathrm{Ir} / \mathrm{cr}$	N	Age	$\mathrm{Ir} / \mathrm{cr}$
1	16	0.274	50	17	0.291	98	18	0.551
2	16	0.282	51	17	0.267	99	18	0.715
3	16	0.269	52	17	0.768	100	18	1.116
4	16	0.34	53	17	0.734	101	18	1.036
5	16	0.331	54	17	0.68	102	18	0.72
6	16	0.386	55	17	0.972	103	18	0.731
7	16	0.369	56	17	0.558	104	18	0.731
8	16	0.395	57	17	0.711	105	18	0.702
9	16	0.452	58	17	0.735	106	18	0.747
10	16	0.262	59	17	0.836	107	18	0.743
11	16	0.193	60	17	0.542	108	18	0.691
12	16	0.416	61	17	0.322	109	18	0.698
13	16	0.388	62	17	0.402	110	18	0.685
14	16	0.534	63	17	0.331	111	18	0.749
15	16	0.545	64	17	0.957	112	18	0.794
16	16	0.533	65	17	0.792	113	18	0.533
17	16	0.564	66	17	0.654	114	18	0.808
18	16	0.747	67	17	0.558	115	18	0.766
19	16	0.585	68	17	0.735	116	18	0.682
20	16	0.251	69	17	0.741	117	18	0.73
21	16	0.354	70	17	0.685	118	19	0.79
22	16	0.633	71	17	0.706	119	19	1.226
23	16	0.586	72	17	0.655	120	19	1.019
24	16	0.621	73	17	0.48	121	19	1.052
25	16	0.531	74	17	0.512	122	19	1.004
26	17	0.675	75	17	0.682	123	19	0.96
27	17	0.662	76	17	0.64	124	19	0.87
28	17	0.756	77	17	0.545	125	19	0.922
29	17	0.817	78	17	0.704	126	19	0.326
30	17	0.727	79	17	0.676	127	19	0.437
31	17	0.66	80	17	0.674	128	19	0.893
32	17	0.654	81	17	0.412	129	19	0.922
33	17	0.575	82	18	0.678	130	19	0.857
34	17	0.704	83	18	0.607	131	19	0.777
35	17	0.684	84	18	0.755	132	19	0.879
36	17	0.604	85	18	0.909	133	19	0.785
37	17	0.642	86	18	0.887	134	19	1.061
38	17	0.79	87	18	0.918	135	19	0.871
39	17	0.74	88	18	1.054	136	19	0.934
40	17	0.727	89	18	0.892	137	19	1.004
41	17	0.917	90	18	0.845	138	19	1.261
42	17	0.748	91	18	0.482	139	19	1.26
43	17	0.806	92	18	0.869	140	19	0.533
44	17	0.798	93	18	0.853	141	19	0.354
45	17	0.693	94	18	0.549	142	19	0.251
46	17	0.576	95	18	0.555	143	19	1.003
47	17	0.586	96	18	0.418			
48	17	0.811	97	18	0.273			
49	17	0.785						

technology as opposed to traditional measurements, both in terms of better image definition and of the possibility of applying, with the appropriate software, a standardized method of crown and root measurement.

It must be borne in mind that with a larger sample, the dispersion index (standard deviation) and the width of the confidence intervals would diminish, obtaining a more circumscribed range of values and hence a greater precision for the two age groups. In addition, the sample we studied cannot be considered representative of the whole world population, because it consisted of subjects of Caucasian race and Italian nationality, although not of socio-economically homogeneous extraction. A useful development of this study would be to extend it to other populations, including among these some of the many immigrants now present in Italy.

It must also be stressed that 100% confidence in dental age assessment has never yet been reached, and no one can make an

TABLE 4-179 Third molars with developing roots belonging to female individuals aged between 16 and 19 years.

N	Age	$\mathrm{Ir} / \mathrm{cr}$	N	Age	Ir/cr	N	Age	$\mathrm{Ir} / \mathrm{cr}$
1	16	0.711	61	17	0.556	121	18	0.32
2	16	0.731	62	17	0.499	122	18	0.461
3	16	0.307	63	17	0.894	123	18	0.793
4	16	0.243	64	17	0.881	124	18	0.769
5	16	0.366	65	17	0.448	125	18	0.755
6	16	0.454	66	17	0.358	126	18	0.731
7	16	0.911	67	17	0.921	127	18	0.594
8	16	0.919	68	17	0.717	128	18	0.733
9	16	0.464	69	17	0.909	129	18	0.272
10	16	0.479	70	17	1.09	130	18	0.55
11	16	0.345	71	17	0.341	131	18	0.668
12	16	0.38	72	17	0.232	132	18	0.725
13	16	0.48	73	17	0.23	133	18	0.899
14	16	0.43	74	17	0.654	134	18	0.833
15	16	0.263	75	17	0.842	135	18	0.984
16	16	0.276	76	17	0.629	136	18	0.657
17	16	0.584	77	17	0.635	137	18	0.597
18	16	0.604	78	17	0.844	138	18	0.764
19	16	0.612	79	17	0.864	139	18	0.705
20	16	0.771	80	17	0.374	140	18	0.785
21	16	0.423	81	17	0.385	141	18	0.728
22	16	0.349	82	17	0.397	142	18	0.701
23	16	0.64	83	17	0.431	143	18	0.79
24	16	0.713	84	17	0.414	144	18	0.682
25	16	0.526	85	17	1.03	145	18	0.663
26	16	0.576	86	17	0.853	146	18	0.647
27	16	0.222	87	17	0.46	147	18	0.639
28	16	0.268	88	17	0.464	148	18	0.687
29	16	0.633	89	17	1.216	149	18	0.706
30	16	0.541	90	17	1.091	150	18	0.533
31	16	0.254	91	17	0.666	151	19	0.714
32	16	0.179	92	17	0.561	152	19	0.691
33	16	0.159	93	17	0.634	153	19	0.377
34	16	0.158	94	17	0.68	154	19	0.369
35	16	1.143	95	17	0.268	155	19	0.81
36	16	0.98	96	17	0.416	156	19	0.614
37	16	0.381	97	17	0.554	157	19	0.879
38	16	0.413	98	17	0.558	158	19	0.985
39	16	0.403	99	17	0.489	159	19	1.069
40	16	0.375	100	17	0.534	160	19	1.019
41	16	0.28	101	17	0.586	161	19	1.084
42	16	0.306	102	17	0.621	162	19	1.124
43	16	0.312	103	17	0.639	163	19	1.109
44	16	0.241	104	17	0.562	164	19	0.675
45	16	0.205	105	17	0.498	165	19	0.804
46	16	0.225	106	17	0.211	166	19	0.599
47	16	0.267	107	17	0.518	167	19	0.492
48	16	0.251	108	17	0.57	168	19	0.751
49	16	0.208	109	18	0.688	169	19	0.819
50	16	0.237	110	18	0.526	170	19	0.705
51	16	0.441	111	18	0.825	171	19	0.958
52	16	0.23	112	18	0.811	172	19	0.979
53	17	0.326	113	18	0.587	173	19	0.822
54	17	0.395	114	18	0.588	174	19	0.863
55	17	0.454	115	18	0.819	175	19	0.887
56	17	0.517	116	18	0.98	176	19	0.893
57	17	0.572	117	18	1.026	177	19	0.63
58	17	0.564	118	18	0.969	178	19	0.851
59	17	0.485	119	18	1.051	179	19	0.962
60	17	0.382	120	18	0.882			

exact judgment or a certain prediction of age, because no extremely precise and accurate age-determination technique has yet been devised, owing to the great complexity and variability of human development (13).

For this reason, all the techniques used to determine the age of a living subject can provide only indications of the biological age, but no certainties as regards chronological age. The aim of our

TABLE 5—Synoptic table by confidence tables and statistical indicators.

	Males		Females	
	Minors	Adults	Minors	Adults
With 90% confidence intervals				
Mean	0.59179	0.78585	0.51656	0.75573
Lower limit	0.55794	0.73780	0.47824	0.71871
Upper limit	0.62565	0.83391	0.55488	0.79275
Width class	0.06771	0.09612	0.07664	0.07405
Median	0.64000	0.78750	0.47950	0.75100
Variance	0.03352	0.05133	0.05761	0.03502
Mean square error	0.18310	0.22657	0.24001	0.18715
Minimum	0.19300	0.25100	0.15800	0.27200
Maximum	0.97200	1.26100	1.21600	1.12400
Range	0.77900	1.01000	1.05800	0.85200
Interquartile range	0.29650	0.23775	0.29275	0.23500
Skewness index	-0.36017	-0.27873	0.80377	-0.23612
Kurtosi index	-0.63159	0.10556	0.19099	0.02606
With 95% confidence intervals				
Mean	0.59179	0.78585	0.51656	0.75573
Lower limit	0.55130	0.72832	0.47077	0.71144
Upper limit	0.63228	0.84339	0.56234	0.80003
Width class	0.08097	0.11507	0.09157	0.08859
Median	0.64000	0.78750	0.47950	0.75100
Variance	0.03352	0.05133	0.05761	0.03502
Mean square error	0.18310	0.22657	0.24001	0.18715
Minimum	0.19300	0.25100	0.15800	0.27200
Maximum	0.97200	1.26100	1.21600	1.12400
Range	0.77900	1.01000	1.05800	0.85200
Interquartile range	0.29650	0.23775	0.29275	0.23500
Skewness index	-0.36017	-0.27873	0.80377	-0.23612
Kurtosi index	-0.63159	0.10556	0.19099	0.02606
With 99% confidence intervals				
Mean	0.59179	0.78585	0.51656	0.75573
Lower limit	0.53811	0.70935	0.45599	0.69692
Upper limit	0.64547	0.86236	0.57712	0.81454
Width class	0.10736	0.15301	0.12114	0.11762
Median	0.64000	0.78750	0.47950	0.75100
Variance	0.03352	0.05133	0.05761	0.03502
Mean square error	0.18310	0.22657	0.24001	0.18715
Minimum	0.19300	0.25100	0.15800	0.27200
Maximum	0.97200	1.26100	1.21600	1.12400
Range	0.77900	1.01000	1.05800	0.85200
Interquartile range	0.29650	0.23775	0.29275	0.23500
Skewness index	-0.36017	-0.27873	0.80377	-0.23612
Kurtosi index	-0.63159	0.10556	0.19099	0.02606

FIG. 3-Graph of the width by tolerance classes for males.
study was to provide a more objective determination method based on the root development of the inferior third molar, overcoming the limits of a purely morphological study in which the stages lead to an unknown final length, and which also suffers from considerable observer bias.

FIG. 4-Graph of the width by tolerance classes for females.

However, age estimation can be made more precise by comparing the standard deviation with other skeletal age calculation techniques based on some ossification nuclei of the scapula, clavicle, and femur, for instance, which are completed between the ages of 18 and 25 years.

In fact, according to Ubelaker, it is generally agreed that assessment of age reflects a greater accuracy when derived from multiple indicators (14). Finally, it must be stressed that another advantage in using a digital technique is its lesser invasiveness, because radiation is reduced by $\frac{3}{4}$ as compared with traditional orthopantomography, thus better complying with the principles of medical ethics.

References

1. United Nations High Commissioner for Refugees. Guidelines on policies and procedures in dealing with unaccompanied children seeking asylum. Geneva: United Nations High Commissioner for Refugees, 1997.
2. Schmeling A, Olze A, Reisinger W, Geserick G. Age estimation of living people undergoing criminal proceedings. Lancet 2001;358:89-90.
3. Thorson J, Hagg U. The accuracy and precision of the third mandibular molar as an indicator of chronological age. J Swed Dent 1991;15: 15-22.
4. Mincer H, Harris E, Berryman HE. The ABFO study of third molar development and the use as an estimator of chronological age. J Forensic Sci 1993;38:379-90.
5. Solari A, Abramovitch K. The accuracy and precision of third molar development as an indicator of chronological age in Hispanics. J Forensic Sci 2002;47:531-5.
6. Introna F, Santoro V, De Donno A, Belviso M Morphological analysis of the root development of the third molar by the study of digital orthopantomographs. Proceedings of the 57th Annual Meeting of the American Academy of Forensic Sciences; 2005 Feb. 21-26; New Orleans, LA. Colorado Springs, CO: American Academy of Forensic Sciences, 2005.
7. Holtta P, Nystrom M, Evalahti M, Alalusua S. Root-crown ratios of permanent teeth in a healthy Finish population assessed from panoramic radiographs. Eur J Orthod 2004;26:491-7.
8. Jepsen A. Root surface measurements and a method for X-ray determination of root surface area. Acta Odontol Scand 1963;21:3446.
9. Kullman L, Johanson G, Akesson L. Root development of the lower third molar and its relation to chronological age. Swed Dent J 1992;16:161-7.
10. Teivens A, Mornstad HA. Comparison between dental maturity rate in the Swedish and Korean population using a modified Demirjian method. J Forensic Odonto-Stomatol 2001;19(2):31-5.
11. Demirjian A, Levesque GY. Sexual differences in dental development and prediction of emergence. J Dent Res 1980;59:1110-22.
12. Pinchi V, Parenti T, Vivoli B, Norelli GA. La maturazione dell'ottavo nell'accertamento radiografico dell'età: un confronto tra metodi. Riv It Med Leg 2003;25:365-77.
13. Introna F, Campobasso CP. Biological vs legal age of living individuals. In: Schmitt A, Cunha E, Pinheiro J, editors. Forensic anthropology and medicine: complementary sciences from recovery to cause of death. Totowa, NJ: Humana Press, Inc, 2006;57-82.
14. Ubelaker DH. The estimation of age at death from immature human bone. In: Iscan MY, editor. Age markers in the human skeleton. Springfield, IL: Charles C. Thomas, 1989;55-70.

Additional information and reprint requests:
Valeria Santoro, Ph.D.
Section of Legal Medicine
University of Bari
P.zza Giulio Cesare n. 11

70124 Bari
Italy
E-mail: vasantoro@virgilio.it

[^0]: ${ }^{1}$ Section of Legal Medicine, University of Bari, P.zza Giulio Cesare n.11, 70124 Bari, Italy.
 ${ }^{2}$ Section of Statistics Sciences, University of Bari, Via Camillo Rosalba n.53, 70124 Bari, Italy.

 Received 21 May 2007; and in revised form 13 Oct. 2007; accepted 28 Oct. 2007.

